Sparse and smooth functional data clustering
نویسندگان
چکیده
Abstract A new model-based procedure is developed for sparse clustering of functional data that aims to classify a sample curves into homogeneous groups while jointly detecting the most informative portions domain. The proposed method referred as and smooth (SaS-Funclust) relies on general Gaussian mixture model whose parameters are estimated by maximizing log-likelihood function penalized with adaptive pairwise fusion penalty roughness penalty. former allows identifying noninformative portion domain shrinking means separated clusters some common values, whereas latter improves interpretability imposing degree smoothing cluster means. via an expectation-conditional maximization algorithm paired cross-validation procedure. Through Monte Carlo simulation study, SaS-Funclust shown outperform other methods already appeared in literature, both terms performance interpretability. Finally, three real-data examples presented demonstrate favourable method. implemented package , available CRAN.
منابع مشابه
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
Clustering Large and Sparse Co-occurrence Data
A novel approach to clustering co-occurrence data poses it as an optimization problem in information theory — in this framework, an optimal clustering is one which minimizes the loss in mutual information. Recently a divisive clustering algorithm was proposed that monotonically reduces this loss function. In this paper we show that sparse high-dimensional data presents special challenges which ...
متن کاملClustering for functional data
This work proposes an unsupervised classification algorithm for curves. It extends the density based multivariate cluster approach to the functional framework. In particular, the modes of the small-ball probability are used as starting points to build the clusters. A simulation study is proposed.
متن کاملClustering multivariate functional data
Model-based clustering is considered for Gaussian multivariate functional data as an extension of the univariate functional setting. Principal components analysis is introduced and used to define an approximation of the notion of density for multivariate functional data. An EM like algorithm is proposed to estimate the parameters of the reduced model. Application on climatology data illustrates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical papers
سال: 2023
ISSN: ['2412-110X', '0250-9822']
DOI: https://doi.org/10.1007/s00362-023-01408-1